Exergoeconomic Assessment of Solar Absorption and Absorption-Compression Hybrid Refrigeration in Building Cooling
نویسندگان
چکیده
The paper mainly deals with the match of solar refrigeration, i.e., solar/natural gas-driven absorption chiller (SNGDAC), solar vapor compression–absorption integrated refrigeration system with parallel configuration (SVCAIRSPC), and solar absorption-subcooled compression hybrid cooling system (SASCHCS), and building cooling based on the exergoeconomics. Three types of building cooling are considered: Type 1 is the single-story building, type 2 includes the two-story and three-story buildings, and type 3 is the multi-story buildings. Besides this, two Chinese cities, Guangzhou and Turpan, are taken into account as well. The product cost flow rate is employed as the primary decision variable. The result exhibits that SNGDAC is considered as a suitable solution for type 1 buildings in Turpan, owing to its negligible natural gas consumption and lowest product cost flow rate. SVCAIRSPC is more applicable for type 2 buildings in Turpan because of its higher actual cooling capacity of absorption subsystem and lower fuel and product cost flow rate. Additionally, SASCHCS shows the most extensive cost-effectiveness, namely, its exergy destruction and product cost flow rate are both the lowest when used in all types of buildings in Guangzhou or type 3 buildings in Turpan. This paper is helpful to promote the application of solar cooling.
منابع مشابه
Design and Thermodynamic analysis of solar air humidifier
In this paper, the cooling system of the air humidifire, completely powered by solar energy, has been designed and optimized. In the cooling system, instead of conventional compression cooling systems, the ammonia absorption refrigeration system has been used.Its design is done in a way that the performanceof the system has increased remarkably in environments with high temperature. The ammonia...
متن کاملThermoeconomic analysis of a hybrid PVT solar system integrated with double effect absorption chiller for cooling/hydrogen production
A novel solar-based combined system which is consisting of a concentrated PV, a double effect LiBr-H2O absorption chiller, and a Proton Exchange Membrane (PEM) is proposed for hydrogen production. A portion of the received energy is recovered to run a double effect absorption chiller and the rest is turned into electricity, being consumed in the PEM electrolyzer for hydrogen producti...
متن کاملAdvanced Analysis of Dew Point Control Unit of Hybrid Refrigeration Systems in Gas Refineries
In this paper, an advanced analysis of a novel hybrid compression-absorption refrigeration system (HCARS) for natural gas dew point control unit in a gas refinery is presented. This unit separates the heavy hydrocarbon molecules in the natural gas, which is traditionally carried out by natural gas cooling in a compression refrigeration cycle (CRS). The power input required for the refrigeration...
متن کاملExergoeconomic Evaluation of an Integrated Nitrogen Rejection Unit with LNG and NGL Co-Production Processes Based on the MFC and Absorbtion Refrigeration Systems
Natural gas is often associated with nitrogen and heavy compounds. The Heavy components in the natural gas not only can feed downstream units, owing to the low temperature process may be formed solid as well. Therefore, heavy components separation can be a necessity and produce useful products. Virtually, all natural gases are containing nitrogen that would lower the heating value of natural ...
متن کاملExperimental investigation on the effect of phase change materils (PCM) in solar compression refrigeration cycle efficiency
Saving energy is one of the most important challenges of todaychr('39')s world. Reducing electrical energy consumption in compressed air systems is one of the essential requirements for designing these systems. When using domestic air conditioners (dual air conditioners) in very hot areas (Khuzestan) their performance decreases and electric current consumption increases. Therefore, the use of n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 20 شماره
صفحات -
تاریخ انتشار 2018